
A brief history of C/C++

BCPL (Martin Richards), 1967, Cambridge

B (Ken Thompson), 1970, Bell Labs

C (Dennis Richie), 1972, Bell Labs, was used in development of UNIX operating

system

K & R C (Brian Kerninghan & Dennis Richie), 1978, the first standard

ANSI (American National Standard Institute) standard, 1989

C99 standard, 1999

C11 standard, 2011

C++ (Bjarne Stroustrup), 1985, Bell Labs

C++ version 2.0, 1989

C++ version 11, 2011

C++ version 14, 2014

C++ version 17, 2017

C++ versioon 20, 2020

C++ is hybrid (object oriented and also procedural), C is procedural.

C is considered to be a subset of C++: everything what is written according to C rules

is accepted by C++ compiler. However, it is not strictly true, because there are minor

incompatibilities.

Java and C# use a lot of ideas and syntax of C/C++.

Why C/C++?

According to so-called TIOBE index (https://www.tiobe.com/tiobe-index/), the 6

most popular languages at autumn 2023 are:

1. Python

2. C

3. C++

4. Java

5. C#

6. JavaScript

C is

• A general-purpose language (good for any programming task including

development of operating systems, embedded software for microcontrollers, etc.).

• Its constructs map very well the machine code instructions. Therefore the

executables basing on code in C tend to be very compact and run quickly.

• Portable – C source code written for one platform can be without (or minimal)

modifications used on some other platform.

• Oriented to professional programmer.

• For beginners difficult to learn.

C++ adds to C the possibility to write object oriented software.

https://www.tiobe.com/tiobe-index/

Program in C

A program in C is a set of functions. Some of them are standard functions from IDE,

the others are written (or purchased, downloaded as freeware from Internet, etc.) by

software developer(s). Complicated programs consist of hundreds of C functions.

The text of non-standard functions is in source code files (*.c or *.cpp). The

programmer may decide freely, how to split a long source code into separate files.

Mostly, a single source file should contain a set of preferably closely related functions.

For example, functions dealing with data input should be collated into one file; those

dealing with data output into another file, etc. Of course, for a very simple program

just one source code file is enough. Too long source code files are inconvenient to

handle and therefore should be avoided.

An experienced programmer never uses filenames like File_1.cpp or John_2.cpp. A

filename should somehow express the general task of functions located in this file,

like ReadData.cpp or Printing.cpp.

Source code files are compiled separately. It means that everything needed for

successful compilation must be present in *.c /*.cpp file itself or in the included *.h

files. The compiler will not search missing information from other sources.

Identifiers and keywords (1)

Identifier refers to name given to entities such as variables or functions. Keywords

like int, char, if, else, etc. are predefined, reserved words that have special meanings

to the compiler.

C is case sensitive: all the keywords must be written in lowercase (int is a keyword but

Int or INT is not).

Rules for identifiers:

• An identifier in C may include uppercase letters A, B, …Z; lowercase letters a, b,

…z; digits 0, 1, …9 and underscore _. Special characters like commas or question

marks as well as white characters like spaces or jumps to new line are not allowed.

• The number of characters in an identifier is not restricted but the compiler ignores

characters on positions 32 and higher.

• The first character may be an uppercase letter, a lowercase letter or underscore but

not a digit.

• Identifiers must be different from keywords.

Good programming practice: you can choose any name for an identifier (excluding

keywords). However, if you give meaningful name to an identifier, it will be easy to

understand and work on for you and your fellow programmers.

Identifiers and keywords (2)
Examples:

int i = 0; // i is the identifier, int is keyword

if (money_on_account != 0)

{……} // money_on_account is the identifier, if is keyword

double moneyOnAccount; // moneyOnAccount is the identifier, double is keyword

MoneyOnAccount = 100.5;

// error: as C is case sensitive, moneyOnAccount and MoneyOnAccount are different

// identifiers and here MoneyOnAccount is not defined

unsigned short int 3s; // error, an identifier cannot start with digit

long long int counter of calls; // error, the identifier cannot contain spaces

Good programming practice: examples how to format long identifiers:

long long int counter_of_calls;

long long int counterOfCalls;

long long int CounterOfCalls;

int COUNTER; // formally correct but identifiers not containing lowercase letters are

// not recommended

char _c = 'A'; // formally correct but identifiers starting with _ are not reccomended

Statements (1)

Statement in C is a command that instructs the computer to take an action.

Single statement ends with semicolon.

Compound statement consists of several single statements within braces { and }. Also,

a compound statement may include other compound statements. Semicolon after

closing } is not needed and ignored by the compiler.

There are no specific rules for formatting the C source code: you may put any number

of spaces between the entities of code, split the code into the rows as you like, etc.

Good programming practice:

• Do not put several single statements on the same line.

• After braces go to new line like

if (i > 10)

{

printf("greater");

…………

}

else

{

or

Statements (2)

if (i > 10) {

printf("greater");

…………

}

else {

 …………

}

• Indent code located in braces typing a tab or some spaces before statements like

if (i > 10)

{

printf("greater");

………..

if (j < 20)

{

printf("lesser");

……………….

}

}

Declaration of variables
<type_keyword> <variable_name_1> = <initial_value_1>,

<variable_name_2> = <initial_value_2>,

……………………………………………………………….

<variable_name_n> = <initial_value_n>;

The initial value may be a constant, identifier of another variable or an expression.

Initialization is optional. Example:

int a = 10, b = a *10, c; // a is now 10, b is 100 but c may have any value

Variables may be declared at any place in your function. But before their first usage they

must be declared and got some value:

double d1 = 0.1, d2;

double d3 = sqrt(d2); // error, value of d2 was not specified

d4 = sqrt(d1); // error, d4 is not declared

Statement

const <type_keyword> <variable_name_1> = <initial_value_1>,

<variable_name_2> = <initial_value_2>,

……………………………………………………………….

<variable_name_n> = <initial_value_n>;

declares constant variables. Their initialization is compulsory. Changing their values later

is not possible.

const double pi = 3.14159;

pi = 3.14159265; // error

Standard data types
Type Bytes Range

unsigned char 1 0….+255

signed char 1 -128….+127

unsigned short int 2 0….+65,535

signed short int 2 -32,768….+32,767

unsigned int 4 0….+4,294,967,295

signed int 4 –2,147,483,648…+2,147,483,647

unsigned long int 4 0….+4,294,967,295

signed long int 4 –2,147,483,648….+2,147,483,647

unsigned long long int 8 0….+18,446,744,073,709,551,615

signed long long int 8 –9,223,372,036,854,775,808….

+9,223,372,036,854,775,807

float 4 -3.4*1038….+3.4*1038

double 8 -1.7*10308….+1.7*10308

long double 8 -1.7*10308….+1.7*10308

Constants (1)
Integer constants may be in decimal, hexadecimal or octal numeral systems:

int i = 254;

int j = 0xFE; // 254 in hexadecimal, you may use upper- or lowercase characters

int k = 0376; // 254 in octal, allowed digits are 0,1,….7, 810 = 108

int m = 078; // error, 0 at the beginning means that the value is in octal, but digit 8 in

// octal numeral system is not recognized

Floating point constants may be in decimal or exponential form:

double d1 = 31.4159;

double d2 = 0.314159e2; // 31.4159 * 102, E is also allowed

double d3 = 5.2e-4; // 0.00052

double d4 = 1e6; // 1,000,000; mantissa may be written without decimal point

Character constants are enclosed in apostrophes, but there are exceptions:

char c1 = 'x'; // for compiler it means that value of c1 is 120 or 0x78

char c2 = '+'; // for compiler it means that value of c2 is 43 or 0x2B

char c3 = '5'; // for compiler it means that value of c3 is 53 or 0x35

char cc1 = '5' + 1; // cc1 is now 54 or '6', but not 6

char cc2 = '5' + '1'; // cc2 is now 53 + 51 = 104 or 'h', but neither '6' nor 6

char cc3 = 5 + 1; // cc3 is now 6

Constants (2)
However

char c4 = '\''; // two apostrophes at the end, value of c4 is 39 or apostrophe by ASCII table

char c5 = '\"' // quotation mark and apostrophe at the end, value of c5 is 34 or quotation

// mark by ASCII table

char c6 = '\\'; // value of c6 is 92 or backslash by ASCII table

char c7 = '\' // error

char c8 = ' '; // space or 32 by ASCII table

ASCII table contains also some special characters needed to format or correct the text, for

example:

char c9 = '\n'; // 10 or 0x0A – line feed (or LF) by ASCII table, instructs to continue

// output on the next line

char c10 = '\t'; // 9 or 0x09 – horizontal tab (or HT)

printf("x = %d\ny=%d\n", x, y); // prints two lines – one for x and the next for y

printf("x = %d\ty=%d\n", x, y); // prints table– one column for x and the second for y

char c11 = '\0'; // all the 8 bits of c11 are zero

char c12 = '\r'; // 12 or 0x0D – carriage return (or CR) by ASCII table

In teletype printers to move to the next row two operations are needed: bring the carriage

back to the beginning of row and push the paper up. Therefore the end of row was

marked with two characters: \r\n. This combination is still used in Windows text (*.txt)

files.

Constants (3)

Arrays (1)
Array is a fixed-size sequental collection of elements of the same type.

One-dimensional array (vector) is declared as

<array_name>[<number_of_elements>]

Examples:

char c = 'A', mc[10]; // array identified with mc occupies 10 bytes

int i1, mi[100], i2; // mi occupies 4*100 bytes

double md[100]; // md occupies 8*100 bytes

Two-dimensional array (matrix) is declared as

<array_name>[<number_of_rows>] [<number_of_columns>]

Example:

int mmi[100][100]; // occupies 4*100*100 bytes

Generally, the number of dimensions is not limited, but three and more dimensional

arrays are very seldom used.

To declare an array, one has to specify the type of members, the name of array and the

dimension(s). The dimension(s) (enclosed in brackets) must be constant(s) (not

variable(s)).

Arrays (2)

Initializtion of array members is also possible:

<array_name>[<optional_number_of_elements>] = {

<sequence_of_initial_values_separated_by_commas> }

Example:

int mi[10] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9};

or

int mi[] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9}; // dimension is specified by the number of initial

// values

To access a member of array, write the array name and the ordering number (index) of the

member. The index is also closed in brackets, for example:

mc[0] = 10;

The index of the first member is always 0. The index of the last member is always

dimension -1. Members of mi are mi[0], mi[1], …., mi[9] but not mi[10].

The index may be an integer expresson:

int n, m, mi[400];

n = 5;

m = mi[n * 20] + mi[n * 21] / 2; // mi[100] + mi[105] / 2

But

mi[n * 100] = 0; // serious error, m[500] does not exist, the memory is now corrupted

Assignment
Assignment operator in C is =. For example

x = y + z; // sum of y and z is stored on the memory field identified by name x

An expression may contain more than one assignment, for example

a = b = c = x + y; // sum of x and y is first stored on memory field identified by name c.

// After that the value of c is copied into b and at last the value of b

// is copied into a.

However,

a = b = c +1 = x + y; // error

On the left from assignment operator must be so called lvalue (here l means left): an

identifier or expression that specifies a certain memory field. c+1 is not such an

expression.

On the same time expression:

d = e + (c = a + b);

is correct, because due to parentheses c first gets its new value a + b and then the new c

is added to e.

Good programming practice: do not try to be too clever and write expressions that are

difficult to understand.

Arithmetical operators (1)
Let

int a = 15, b = 2, c;

Then

c = a + b; // addition, c is now 17

c = a – b; // subtraction, c is now 13

c = a * b; // multiplication, c is now 30

c = a / b; // division, c is now 7 and not 7.5 or 8

c = -a; // sign operator, c is now -15

c = a % b; // modulus operator, gives the reminder, c is now 1

The sign operator is unary (just one operand). The others are binary operators (two

operands).

Fraction resulting from integer division is simply discarded: 5 / 2 is 2, 5 / 3 and 5 /4 are 1,

1 / 5 and 4 / 5 are 0. But 5.0 / 2.0 is 2.5 and 1.0 / 5.0 is 0.2.

Modulus operator is defined only for integer operands: 5 % 3 is 2, 3 % 5 is 3, 6 % 3 is 0,

0 % 3 is 0.

Relational operators
Let

int a = 15, b = 2, c;

Then

a == 15 // true, a is equal to 15

a != 15 // false because we claim that a is not 15

a != 10 // true because we claim that a is not 10

a > b // true, a is really greater than b

a >= 15 // true, a is really equal or greater than 15

a < b // false, a is not less than b

a <= 15 // true, a is really equal or less than 15

Generally, any value of any type that is not zero is handled as "true" and any value of any

type that is zero is handled as "false". But if the result of relational operator is stored or

used as an temporary value in other expressions, the "true" is integer 1 and the false is

integer 0.

c = a == 15; // c is now 1

c = a != 15; // c is now 0

c = (a == 15) + b; // c is now 3

Arithmetical operators (2)
Exercise:

Write a program that reads from keyboard an integer and determines is it even or odd.

The result should be printed as "This number is even" or "This number is odd".

Tips:

• For input use standard functions as they were used in the second program: gets_s and

atoi.

• Print the result using standard function printf.

Logical operators (1)
Boolean algebra (by George Bool 1815 – 1864) is a branch of algebra in which the

variables may have only 2 values: TRUE and FALSE. In traditional algebra, the variables

are numbers and the operations between them are addition, subtraction,etc. In Boolean

algebra we deal with 3 operations:

Logical AND or conjuction or logical multiplication, in C the && binary operator:

TRUE && TRUE = TRUE (read "true and true is true")

TRUE && FALSE = FALSE (read "true and false is false")

FALSE && TRUE = FALSE (read "false and true is false")

FALSE && FALSE = FALSE (read " false and false is false")

Logical OR or disjuction or logical addition, in C the || binary operator:

TRUE || TRUE = TRUE (read "true or true is true")

TRUE || FALSE = TRUE (read "true or false is true")

FALSE || TRUE = TRUE (read "false or true is true")

FALSE || FALSE = FALSE (read " false or false is false")

Logical NOT or negation, in C the ! unary oprator:

!TRUE = FALSE (read "not true is false")

!FALSE = TRUE (read "not false is true")

Logical operators (2)
if ((x >= 2) && (x <= 4))

printf("x is in range 2…4\n");

For example, if x is 3, the x>= 2 is 1 (TRUE) and x <= 4 is also 1 (TRUE). So we get

TRUE and TRUE or in other words the result of expression after if is 1 (TRUE).

if ((x < 2) || (x > 4))

printf("x is not in range 2…4\n");

For example, if x is 1, the x < 2 is 1 (TRUE) and x > 4 is 0 (FALSE). So we get TRUE or

FALSE or in other words the result of expression after if is 1 (TRUE).

If x is 5, x < 2 is 0 (FALSE) and x > 4 is 1 (TRUE). So we get FALSE or TRUE or in

other words the result of expression after if is 1 (TRUE).

If x is 3, x < 2 is 0 (FALSE) and x > 4 is also 0 (FALSE). So we get FALSE or FALSE or

in other words the result of expression after if is 0 (FALSE).

if (x) // the same as if (x != 0)

{ // a trick used by experienced programmers

…………..

}

if (!x) // the same as if (x == 0) because !0 gives 1

{ // a trick used by experienced programmers

……………

}

Logical operators (3)
Exercise:

Write a program that reads from keyboard a text (max 80 characters) and determines is

the first character a digit or an English alphabet letter (uppercase or lowercase) or some

other character. The result should be printed as "The text starts with digit" or " The text

starts with uppercase letter" or " The text starts with lowercase letter" or " The text starts

with unidentified character".

Tips:

• For input use standard function gets_s.

• Print the result using standard function printf.

• To reason out the solution open the ASCII table (http://www.asciitable.com/) and think

a bit!

• First draw the flowchart and only after that start to write code!

http://www.asciitable.com/

Looping (1)
The computer executes the program statements sequentially: the first statement is

executed first, the second statement after it, etc. The if and if else branching statements

allow to select, which statements to execute and which to skip.

The loop statement allows to execute a single or compound statement multiple times

while (<condition to repeat>)

<statement>

Example: we need to find the average of elements in an array:

double array[7] = { 1.0001, 1.256, 111.4, 44.5, 6.789, 12. 47, 54.98}, average, sum = 0.0;

int i = 0;

while (i < 7) // when becomes FALSE, the repeating execution of loop body ends

{

sum = sum + array[i];

i = i +1;

}

average = sum / 7;

When the loop runs first:

while (i < 7) // 0 < 7 is TRUE, execute the loop

{

sum = sum + array[i]; // sum = 0 + 1.0001, i.e. sum is now 1.0001

i = i +1; // i is now 1

} // jump back to row containing the while keyword

Looping (2)
When the loop runs the second time:

while (i < 7) // 1 < 7 is TRUE, execute the loop

{

sum = sum + array[i]; // sum = 1.0001 + 1.256, i.e. sum is now 2.2561

i = i +1; // i is now 2

} // jump back to row containing the while keyword

………………………………………………..

When the loop runs seventh time:

while (i < 7) // 6 < 7 is TRUE, execute the loop

{

sum = sum + array[i]; // sum = 177.4151 + 54.98, i.e. sum is now 232.3951

i = i +1; // i is now 7

} // jump back to row containing the while keyword

When the loop runs eighth time:

while (i < 7) // 7 < 7 is FALSE, jump to the statement following the loop

{

sum = sum + array[i];

i = i +1;

}

average = sum / 7;

Looping (3)

Generally, the preparations are needed for initializing

the variables the loop uses.

The condition is an expression enclosed into

parentheses. This expression is recalculated and tested

on each iteration. If the result of expression is TRUE

(i.e. nonzero), the loop body statement is executed.

The loop body should also modify the variables the

condition uses. If the result is FALSE (i.e. zero), the

body is not executed and the statement executed next

is the stament located right after the loop body.

The condition may be FALSE right at the beginning. In that case the loop is not executed.

If the condition never becomes FALSE (for example, because there are errors in test

expression or in the loop body), the loop never terminates and the program hangs.

Looping (4)

Exercise:

Write a program that generates 50 pseudo-random integers. If the integer is less than 500,

print it (each on its own command prompt window row), otherwise ignore.

Tips:

• To generate psedo-random integers use standard function rand. Example:

#include "stdlib.h"

int r = rand(); // returns a pseudo-random integer, has no arguments

• Print the results using standard function printf.

• About random and pseudo-random numbers read https://www.random.org/randomness/

Exercise:

Write a program that fills an integer array

int Fib[20];

with members of Fibonacci sequence 1, 1, 2, 3, 5, 8, ….

f0 = 1

f1 = 1

fi = fi-1 + fi-2 for each i > 1

To check the results print them using standard function printf.

https://www.random.org/randomness/

Looping (5)

Exercise:

Write a program that fills an integer array

int Rand[50];

with pseudo-random numbers, finds the maximum of them and using the standard

function printf prints the result.

Exercise:

Write a program that:

1. Reads from keyboard a text consisting of any number but no more than 80 characters.

2. Checks does this text contains characters that are not English alphabet uppercase or

lowercase letters. If the answer is yes, the program must print message "Illegal input"

and quit immediately.

3. Determines how many letters 'a' and 'A' it contains.

4. Prints the result.

Tips:

• For input use standard function gets_s. Remember that the array filled by gets_s is a

string, i.e. its last character is automatically set to '\0'.

• Print the result using standard function printf.

• First draw the flowchart and only after that start to write code!

Looping (6)
Sometimes it may happen that we need to jump out from the loop earlier, i.e. when the

condition is still TRUE. In that case we may jump to the statement following the loop

using statement:

break; // just one word in statement

Example:

int array[10], i = 0, x;

char line[81];

printf("Type 10 even integers");

while (i < 10)

{

gets_s(line);

x = atoi(line);

if (x % 2 == 0) // check is the inputted integer even

array[i] = x; // yes, it is even, insert into array

else

{

printf("Error\n"); // no, it is odd, print error message

break; // break the loop off, jump out although i < 10

}

i = i + 1;

}

Looping (7)

Exercise:

Write a program that:

1. Reads from keyboard a text consisting of any number but no more than 80 characters.

2. Determines how many undercase vowels ('a', 'e', 'i', 'o', 'u', 'y') it contains.

3. Prints the result.

Tips:

• For input use standard function gets_s. Remember that the array filled by gets_s is a

string, i.e. its last character is automatically set to '\0'.

• To check is the character an undercase vowel, first declare and initialize an array of

vowels. Thus, the program will contain two loops: the outer loop takes the characters

from input text and the other (inner or nested loop) checks can it found from the array

of vowels. If the result of searching is positive, increment the counter of vowels and

jump out from the inner loop.

• Print the result using standard function printf.

• First draw the flowchart and only after that start to write code!

Looping (8)

Exercise:

Write a program that reads from keyboard characters using standard function _getche:

#include "conio.h"

char c = _getche();

_getche forces the program to stop and wait for a keypress. It prints the character

corresponding to pressed key (additional ENTER is not needed) and returns the ASCII

code.

The characters should be stored in array

char text[21];

The reading must be stopped when

• The array text already contains 20 characters (i.e. is full). In that case put '\0' at the

end of array (i.e. text[20]), print the result and exit.

• The user presses ESC (it means that _getche returns 27, see the ASCII table on slide

Constants (3)). In that case put '\0' after the last significant character (i.e. replace 27

with zero), print the result and exit.

Tips:

• Print the result using standard function printf:

 printf("\nResult is: %s\n", text);

• First draw the flowchart and only after that start to write code!

Looping (9)
Sometimes it may happen that we are not able to set the condition. In that case we may

write the condition as 1 (i.e. always TRUE) and include the check "continue or break"

into the loop body.

Example: we need a pseudo-random number that exceeds 100:

int ran_val;

while (1)

{

ran_val = rand();

if (ran_val > 100)

break;

}

This code snippet may be written shorter:

while ((ran_val = rand()) < 100);

As (ran_val = rand()) is in parentheses,the first step is to get the pseudo-random value

and store it in variable ran_val. This is also the value which will be compared with 100.

Semicolon at the end of statement means that the loop body is empty.

Good programming practice: do not try to be too clever and write expressions that are

difficult to understand.

Looping (10)

Exercise:

Write a program that reads from keyboard characters using standard function _getche. If the

character is not a lowercase vowel ('a', 'e', 'i', 'o', 'u', 'y'), ignore it. If it is, increase the

counter corresponding to it. If the user presses ENTER (in that case _getche() returns '\r',

see slaide Constants (2)), stop reading, print the resulting tabel and quit.

Tips:

• At first create an array of counters:

int counters[6]; // here is the declaration without initializations

and initialize it with zeroes. Create also an array of vowels and initialize it with 'a', 'e',

'i', 'o', 'u', 'y'.

char vowels[6];

Searching of the character from array vowels you will also get the index for counters.

• Print the rows of resulting table using standard function printf according to the following

format:

printf("%c: %d\n", vowels[i], counters[i]);

• First draw the flowchart and only after that start to write code!

Looping (11)
Exercise:

Write a program that:

1. Reads from keyboard a text consisting of several words separated by space and at least

one numeric value (integer). The numeric value may be in the middle or at the

beginning but not at the end of text. Examples: "I am 21 years old", "I have 6 euros",

"1000 miles far from home".

2. Extracts the first number and converts it into regular integer.

3. Checks is it an even or odd number and prints the result like:

printf("%d is an even number\n", x);

Tips:

• For input use standard function gets_s. Remember that the array filled by gets_s is a

string, i.e. its last character is automatically set to '\0'.

• To extract the number create a buffer like

char buf[20];

• Check one by one the characters of input text. Stop on the first digit and remember the

index.

• Continue checking. Stop on the space ' ' and remember the index.

• Now you have enough information to copy the digits from input text into buffer.

• int x = atoi(buf);

gives you the result. Remember that the input text for atoi is also a string, i.e. its last

character must be '\0'.

Functions (1)

A program in C is a set of functions. Each function accomplishes a particular task.

Each C function has its name (must be unique within the current program). The

function name is a regular C identifier (like a variable name) and, although may be

chosen freely, should be meaningful, i.e. somehow express the task the function must

perform.

Exception: the program must contain one and only one function which has name main

(this is the C keyword). The operating system starts the execution from the main

function which calls some other functions, those also may call other functions etc.

Programs not containing the main function cannot run.

Functions produce actions and may or may not provide values that they return to the

calling function. For example, standard function sqrt calculates the square root and

returns the result to the calling function:

double x = 100, y = sqrt(x); // result returned by sqrt is assigned to y

Standard function exit terminates the program immediately but returns nothing:

#include "stdlib.h"

exit(0); // here 0 is the status code, traditionally code 0 means that there were no errors

Functions (2)
The general form of a function definition is:

<return_value_type> <function_name>(< formal_ parameter_list>) // called also as header

{

<function_body> // sequence of statements

}

The parameter list specifies the names and types of formal parameters:

(<type of parameter_1> <name_of_formal_parameter_1>,

<type of parameter_2> <name_of_ formal_ parameter_2>,

…………………………………………………………………

<type of parameter_n> <name_of_ formal_ parameter_n>)

A function may not have formal parameters. In that case

<return_value_type> <function_name>()

{

<function_body>

}

A function body may not contain definitions of other functions.

Functions (3)
If a function just produces some actions but does not return any values to the calling

function, its return value type is void (C keyword).

If the function has return value, its body must contain at least one statement

return <expression_to_find_value_to_be_sent_to_calling_function>;

Examples:

int main() // int is the return value type, main is the name, parameter list is empty

{ // body starts

printf("Hello");

return 0; // returns value 0

} // body ends

double Max(double a, double b) // but not double max(double a, b)

{ // returns the biggest of the two double values, a and b are formal parameters

if (a > b)

return a;

else

return b;

}

Functions (4)

void PrintMax(double a, double b)

{ // prints the biggest of the two double values but returns nothing

if (a > b)

printf("%lg\n", a);

else

printf("%lg\n", b);

return; // here the return without value is allowed but not obligatory

}

double LawOfCosines(double side1, double side2, double angle)

{ // side1 and side 2 are sides of a triangle, angle (in radians) is between them

// computes the third side of triangle

// Checking of input: the arguments must be positive

if (side1 >= 0 && side2 >= 0 && angle >= 0)

return sqrt(side1 * side1 + side2 *side2 -2 * side1 * side2 * cos(angle));

else

return NAN; // as the return value is not void, the function must return something,

// NAN (not a number) is a constant telling that there was no answer

}

Functions (5)

void PrintBar(int length)

{ // prints bar like *********

int i = 0;

if (length <= 0) // checks is the parameter length (number of * to print) correct

{

return; // errors, returns immediately, return statement is obligatory

}

while (i < length)

{

printf("*");

i = i + 1;

}

printf("\n"); // cursor to the next row

return; // return statement is optional, but useful for setting breakpoints

}

Functions (6)

Expression calling the function:

<function_name>(< actual_ parameter_list>)

The parameter list specifies the values of actual parameters:

(<expression_presenting_the_value_of_actual_parameter_1>,

<expression_presenting_the_value_of_actual_parameter_2>,

…………………………………………………………………

<expression_presenting_the_value_of_actual_parameter_n>)

If the function has no parameters, the calling expression is

<function_name>()

When a function is called then

1. The expressions presenting the values are performed and the results copied into

formal parameters.

2. The executing of calling function is interrupted and the computer starts to execute

the called function.

3. When the called function ends, its return value (if exists) is thrown back into

calling function.

4. The calling function resumes its work.

Functions (7)
In case of function

double Max(double a, double b)

{

if (a > b)

return a;

else

return b;

}

double m, x = 5.0, y = 6.0;

m = Max(x, y); // value of x is copied into a and value of y is copied into b

// the function returns 6.0 which is assigned to m

m = Max(log10(x) + log(y), y *y) + 10;

// 1. Value of x is copied into formal parameter of log10 (base 10 logarithm).

// 2. log10 returns the logarithm, this is stored in a temporary (and unvisible

// for us) variable.

// 3. Value of y is copied into formal parameter of log (base e logarithm).

// 4. log returns the logarithm, this is stored in another temporary variable.

// 5. The values of temporary variables are added, the sum copied into a.

// 6. y * y is calculated and the result is copied into b.

// 7. Max start to run, finds the bigger value and sends back to calling function.

// 8. The value assigned to m is the result of Max + 10

Functions (8)

Function definition may be in one source code file and the call to it in another one.

Therefore, to check and compile the call, the compiler needs the declaration (prototype)

of function:

<return_value_type> <function_name>(<parameter_list>); // semicolon at the end

Example:

double Max(double a, double b);

or as the variable names in the declaration do not have any sense, simply

double Max (double, double);

The declarations are mostly located at the beginning of source code file before the

definitions of functions. In large programs the declarations are collated into a separate

*.h file which is included together with the standard *.h files.

Calls to not declared functions are errors.

Declarations of standard functions are in standard *.h files.

Functions (9)
Exercise:

Write of function that finds and returns the biggest of the given three numbers. Its

declaration must be

int MaxOfThree(int, int, int);

The parameters are the given values. The function must return the biggest number.

To test the function write function main that reads from keyboard the initial data, calls

your function and types the result.

Tips:

• For input use standard functions as they were used in the second program: gets_s and

atoi. For output use printf.

• As an alternative, instead of reading test data from keyboard you may write them

directly into main.

• Do not forget to put the declaration (prototype) after #include directives.

• Remember that the two or even all the three input parameters may be identical. Try

the following tests:

int m1 = MaxOfThree(1, 2, 3);

int m2 = MaxOfThree(3, 2, 1);

int m3 = MaxOfThree(1, 3, 2);

int m4 = MaxOfThree(2, 2, 3);

int m5 = MaxOfThree(2, 2, 2);

Functions (10)
Exercise:

Write of function that converts a temperature value from Celsius to Farhenheit or vice

versa:

TF = TC * 9 / 5 +32

TC = (TF -32) * 5 / 9

The declaration must be

double TempConverter(double, char);

The first parameter is the temperature to convert. The second parameter must be 'F' or 'f'

if the input data is in Farhenheit or 'C' or 'c' if in Celsius.

To test the function write function main that reads from keyboard the initial data, calls

your function and types the result.

Tips:

• For input use standard functions gets_s, atof (similar to atoi, returns double value)

and _getche. For output use printf. As an alternative, instead of reading test data from

keyboard you may write them directly into main.

• If the second parameter is wrong (not from the 4 allowed characters), the output

value must be NAN. Therefore the main must check the result calling standard

function isnan (its argument should be the output of TempConverter). If isnan returns

TRUE (i.e. 1), the main must print "No solution". NAN and isnan need header file

math.h.

Preprocessor directives (1)
C/C++ compilers perform some preparatory work on source code before compiling

(preprocesses the source code). Preprocessing is controled by preprocessor directives:

• Each preprocessor directive must be on its own source code row.

• The first non-white character on directive row must be #.

• Do not use semicolons. Jump to the new row marks the end of directive. However,

backslash \ at the end of directive row means that the directive will continue on the

next row.

#include <filename> // for example #include <stdio.h>

#include "filename" // for example #include "stdio.h"

is the same as if you had typed the entire contents of included file into your source code

at the point where the directive line appears.

The difference between the form with angle brackets and the form with quotation marks

is the order in which the preprocessor searches for the files to be included (turn attention

that the path is incomplete). In our examples the both forms lead to the same result. Who

is interested in details may read https://msdn.microsoft.com/en-us/library/36k2cdd4.aspx

You cannot use C/C++ standard tools (functions like printf or constants like NAN)

without including standard header files presenting the definitions and declarations the

compiler needs. In Visual Studio: to know which *.h header file is required, click on the

name of function and press F1 - it opens the proper page of Microsoft documentation.

https://msdn.microsoft.com/en-us/library/36k2cdd4.aspx

Preprocessor directives (2)
#define <object_macro> <replacement_value>

for example

#define PI 3.14159 // PI is the object macro, 3.14159 is the replacement value

A token is the smallest element of text that is meaningful for the compiler. The tokens are

identifiers, keywords, constants, operators (i.e. =, ==, +, -, && etc.).

When the preprocessor finds a token matching the object macro, it replaces it with the

replacement value. For example

double y = sin(PI * 3 / 2);

actually means

double y = sin(3.14159 * 3 / 2);

But for example in declaration

double yPI23;

nothing is replaced because here PI is not a separate token but a part of token.

Good programming practice: define your macro in uppercase and only in uppercase

letters.

There are also function macros, but they are out scope of our course.

Preprocessor directives (3)

Advantage of macros: suppose we have a big C program handling files. Starting our work

we assume that the length of a file is 10,000 bytes and we write this integer into code in a

lot places. However, later we discover that the correct length is 20,000 bytes. To fix the

error we have to find all the occurances of 10,000 and replace them with 20,000.

As a rule, a big project includes at least one header file created by the programmer

himself / herself. This file contains the prototypes of all the non-standard functions of that

project and is included like the standard header files.

Now if we have put into this *.h file directive:

#define FILE_LENGTH 10000

and everywhere in our code instead of 10,000 have written FILE_LENGTH then all we

need to do to fix the error is to replace in this definition 10,000 with 20,000.

In addition, using of macros instead of constants makes our code more readable.

Input / output standard functions (1)

We already know some mathematical functions, gets_s, atoi, atof, _getche, exit, printf.

Some remarks:

If the input data is not correct (for example, contain spaces or letters) and therefore the

converting into int or double is not possible, atoi and atof return zero. Consequently,

output value zero may mean that the human operator typed zero and also that the human

operator made an error. We'll deal with better input functions later.

_getche has a "sister" function _getch. The only difference is that when the human

operator presses a key, _getche echoes it on the screen but _getch does not. _getch is

good to stop the program.

Examples:

int main()

{

…………………… // do something, print temporary results

_getch(); // program stops here and waits for a keystroke

}

or

printf("Read the message. When ready, press a key");

_getch(); // any key is OK

Input / output standard functions (2)

The last example, however, may not run correctly because the keyboard buffer may

already contain some characters (for example, the operator had inadvertently hit a key)

that are not poped out yet. If this is the situation, _getch reads the first of them and the

program rushes on without any waiting.

To clean the keyboard buffer, write:

while (_kbhit() != 0) // or simply while (_kbhit())

_getch();

printf("Read the message. When ready, press a key");

_getch();

_kbhit returns TRUE if there is at least one character waiting for reading into the memory

and FALSE if the keyboard buffer is empty. But _kbhit does not pop out the character.

printf has at least one parameter: the text called as format string. This text may contain

format specifiers starting with %. The format specifiers are placeholders that are

replaced by values specified in the parameter list that follows the format string.

Examples:

printf("Hello\n"); // no format specifiers, after printing the cursor is set to the next line

printf("x = %d\ny = %d\n", x, y); // format specifiers %d are replaced by values x and y

// x and y must be of type int

printf("%d%% full!\n", n); // prints for example "100% full", here %% means one %

Input / output standard functions (3)

Specifier Type of the corresponding argument

%d or %i signed int

%hd or %hi signed short int

%hhd or %hhi signed char, printed as number

%ld or %li signed long int

%lld or %lli signed long long int

%u or %x or %X unsigned int, x means hexadecimal in lowercase and X in uppecase

%hu or %hx or %hX unsigned short int

%hhu or %hhx or %hhX unsigned char, printed as number

%lu or %lx or %lX unsigned long int

%llu or %llx or %llX unsigned long long int

%c signed char, printed as symbol

char c = 'A';

printf("%hhd %c", c, c); // prints "65 A"

unsigned char uc = 'Z';

printf("%hhu %hhx %hhX", uc, uc, uc); //prints "90 5a 5A"

Input / output standard functions (4)

Specifier Type of the corresponding argument

%f or %F double

%e or %E double, scientific notation (mantissa & exponent), lowercase or uppercase

%g or %G or %lg or %lG double, actually %f, %e or %E depending on which is shorter

In %f, %F, %e and %E specifiers the default value of digits after decimal point is 6.

To change it complete the specifier with precision:

%.<number_of_digits_after_decimal_point><f_or_F_or_e_or_E>

double d = 314159.265;

printf("%f %.3f", d, d); // prints "314159.265000 314159.265"

printf("%e %.3e", d, d); // prints "3.141593e+05 3.142e+05", rounded

But in %g and %G the precision has another meaning:

%.<number_of_digits_to_print><g_or_G>

printf("%g %.3G", d, d); // prints "314159 3.14E+05", rounded

Be careful: printing with small number of digits may lead to corrupted results!

It is also possible to justify the fields, left-pad with zeroes, set the width of field, etc.

Read the specification of printf on http://www.cplusplus.com/reference/cstdio/printf/

http://www.cplusplus.com/reference/cstdio/printf/

Visual Studio debugging tools (1)

If your program crashes, hangs or prints incorrect results, you have to find the error or

in other words, debug your program.

1. Insert the breakpoint on a row (click on this row and press F9) near to the place

where you suspect to be an error. If you have no idea about the location of error,

simply put it at the first row of main:

To remove the breakpoint click on the same row and press F9 again.

Visual Studio debugging tools (2)

2. Press F5 to start debugging. The programs stops on the row marked with breakpoint.

3. Continue the executing row by row. For that:

a) Press F10 to execute the row under cursor (follow the yellow arrow) and move

on to the next row.

b) Press F11 to step into function called on that row.

Do not use F11 for jumping into standard functions.

Example:

If you press F10, Visual Studio executes row

14 (i.e. MaxOfThree is executed and its

results assigned to x) and moves the cursor to

row 15.

If you press F11, the cursor jumps to the

beginning of function MaxOfThree. From

this position you may go on moving with

F10 to follow how the code is performed.

Visual Studio debugging tools (3)

4. When moving through the code, follow also how the values of variables are changing.

There are several ways to do that:

a) Put the mouse cursor on the variable you are interested in but do not click. After a

small pause you will see a small pop-up window presenting the current value of

that variable

b) Open the Locals window: it

shows you all the local

variables and their current

values. By default this window

is located on the left lower

corner. To open it open the

Debug menu, click on

command Windows and from

the pop-up menu select Locals.

Visual Studio debugging tools (4)

c) Press Shift + F9 to open the Quick watch window. Into the Expression box type

the variable or expression you are interested in. For example, if you are working

with an array with name arr, type arr[0], then arr[1], etc. to see the current

values of array members.

Visual Studio debugging tools (5)

5. When you have understood what is going wrong, replace the incorrect code section

and press Shift + F5 to stop debugging. Do not just close the command prompt

window: Visual Studio may try to continue the debugging session and as it has

become impossible, may hang or show strange error messages. In that case there is

only one solution: quit the Visual Studio and restart.

Instead of shortcuts with F-keys you may use the correcponding command from the

Debug menu.

	Slide 1: A brief history of C/C++
	Slide 2: Why C/C++?
	Slide 3: Program in C
	Slide 4: Identifiers and keywords (1)
	Slide 5: Identifiers and keywords (2)
	Slide 6: Statements (1)
	Slide 7: Statements (2)
	Slide 8: Declaration of variables
	Slide 9: Standard data types
	Slide 10: Constants (1)
	Slide 11: Constants (2)
	Slide 12: Constants (3)
	Slide 13: Arrays (1)
	Slide 14: Arrays (2)
	Slide 15: Assignment
	Slide 16: Arithmetical operators (1)
	Slide 17: Relational operators
	Slide 18: Arithmetical operators (2)
	Slide 19: Logical operators (1)
	Slide 20: Logical operators (2)
	Slide 21: Logical operators (3)
	Slide 22: Looping (1)
	Slide 23: Looping (2)
	Slide 24: Looping (3)
	Slide 25: Looping (4)
	Slide 26: Looping (5)
	Slide 27: Looping (6)
	Slide 28: Looping (7)
	Slide 29: Looping (8)
	Slide 30: Looping (9)
	Slide 31: Looping (10)
	Slide 32: Looping (11)
	Slide 33: Functions (1)
	Slide 34: Functions (2)
	Slide 35: Functions (3)
	Slide 36: Functions (4)
	Slide 37: Functions (5)
	Slide 38: Functions (6)
	Slide 39: Functions (7)
	Slide 40: Functions (8)
	Slide 41: Functions (9)
	Slide 42: Functions (10)
	Slide 43: Preprocessor directives (1)
	Slide 44: Preprocessor directives (2)
	Slide 45: Preprocessor directives (3)
	Slide 46: Input / output standard functions (1)
	Slide 47: Input / output standard functions (2)
	Slide 48: Input / output standard functions (3)
	Slide 49: Input / output standard functions (4)
	Slide 50: Visual Studio debugging tools (1)
	Slide 51: Visual Studio debugging tools (2)
	Slide 52: Visual Studio debugging tools (3)
	Slide 53: Visual Studio debugging tools (4)
	Slide 54: Visual Studio debugging tools (5)

